Perspective Drawing
The three photos below demonstrate the difference between 1-Point and 2-Point Perspective, as well as 3-Point Perspective. The first photograph (Fig. 1) is an example of one-point perspective. All of the major Vanishing Points for the buildings in the foreground of Fig. 1 converge at one central location on the horizon line. The angle of view or Point Of View (POV) in Fig. 1 is referred to as Normal View perspective. In Fig. 2 the vanishing points for the two opposing faces of the center foreground building project towards two different vanishing points on the horizon line. In Fig. 3 we see that the horizontal building elements project to the left and right horizon and the vertical building elements project to a central vanishing point in the sky. This upper vanishing point is called the Zenith. If one were looking down on the object from a Bird's Eye perspective, the vanishing point below the horizon and would be called the Nadir. Perspective Types
The three photos below demonstrate the difference between 1-Point and 2-Point Perspective, as well as 3-Point Perspective. The first photograph (Fig. 1) is an example of one-point perspective. All of the major Vanishing Points for the buildings in the foreground of Fig. 1 converge at one central location on the horizon line. The angle of view or Point Of View (POV) in Fig. 1 is referred to as Normal View perspective. In Fig. 2 the vanishing points for the two opposing faces of the center foreground building project towards two different vanishing points on the horizon line. In Fig. 3 we see that the horizontal building elements project to the left and right horizon and the vertical building elements project to a central vanishing point in the sky. This upper vanishing point is called the Zenith. If one were looking down on the object from a Bird's Eye perspective, the vanishing point below the horizon and would be called the Nadir. Perspective Types
Deconstructing "Perspective" from Photography
In the next three diagrams, you will see the same three photographs with Vanishing Point trajectory lines (magenta) and Horizon Lines (blue) traced over the subject matter. Fig. 4 and Fig. 5 are both examples of Normal View perspective. A Normal View angle places the Horizon Line at a natural height as if the viewer was looking straight forward without tilting the head/camera up or down. In these two examples, you will notice that all of the vertical features of the buildings are straight up and down.
In the next three diagrams, you will see the same three photographs with Vanishing Point trajectory lines (magenta) and Horizon Lines (blue) traced over the subject matter. Fig. 4 and Fig. 5 are both examples of Normal View perspective. A Normal View angle places the Horizon Line at a natural height as if the viewer was looking straight forward without tilting the head/camera up or down. In these two examples, you will notice that all of the vertical features of the buildings are straight up and down.
Fig. 6 is an example of a Worm's Eye perspective. In Fig. 6 the head/camera is tilted upward placing the Horizon below the picture. The perspective when the view is tilted in an upward direction, creates a third vanishing point at the Zenith. All of the vertical building features will converge at this upper vanishing point. If we were looking down on a subject, the viewing angle would be a Bird's Eye View and the vertical details would converge at the Nadir.
This technique of tracing parallel lines to their convergence point would be used to construct a Perspective Grid from exiting photographic material. Each convergence point will represent the exact location of the Horizon, Zenith, or Nadir in that photograph.
The Illusion of Depth
In the preceding photographic examples you will notice that as an object recedes towards a Vanishing Point (infinity) it appears to get smaller. This phenomenon is due to the fact that the "viewer" is at a steeper angle of view when looking an object that is in close proximity as opposed to an object of the same size that is farther away and therefor, viewed at a shallower angle. This phenomenon was first observed during the 16th century, when a German painter and printmaker named Albrecht Dürer began drawing observed objects onto a sheet of glass (below, left), later known as the 'picture plane.' Prior to the discovery of the picture-plane, artists used their best guess to determine perspective (below, right).
Albrecht Dürer and Perspective Drawing History Albrecht Dürer drawing on glass 'picture plane' c. 1520 (left), Cappella Tornabuoni fresco in Florence c. 1490 (right)This technique of tracing parallel lines to their convergence point would be used to construct a Perspective Grid from exiting photographic material. Each convergence point will represent the exact location of the Horizon, Zenith, or Nadir in that photograph.
The Illusion of Depth
In the preceding photographic examples you will notice that as an object recedes towards a Vanishing Point (infinity) it appears to get smaller. This phenomenon is due to the fact that the "viewer" is at a steeper angle of view when looking an object that is in close proximity as opposed to an object of the same size that is farther away and therefor, viewed at a shallower angle. This phenomenon was first observed during the 16th century, when a German painter and printmaker named Albrecht Dürer began drawing observed objects onto a sheet of glass (below, left), later known as the 'picture plane.' Prior to the discovery of the picture-plane, artists used their best guess to determine perspective (below, right).
No comments:
Post a Comment